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A mathematical model is suggested for describing the growth of a crystal tube with a small inner diameter
from the melt by the modified Stepanov method with the tube being affected by temperature pulses. The be-
havior of the inner and outer radii of the tube as a function of the amplitude and duration of temperature
jumps is studied.

Introduction. Manufacture of tubes with a small inner diameter by the ordinary Stepanov method presents a
number of difficulties caused by maintenance of a constant value of the thickness of the grown tube. Often the
changes of the surrounding temperature are such that they lead to collapse of the internal cavity of the tube. Therefore,
another type of shaper has been suggested; in this shaper, the inner diameter is created due to the presence of a thin
cylindrical rod at the center with the upper end of the rod being located higher than the outer edge of the shaper.

This type of shaper requires studies associated with probabilistic power jumps of the generator which lead to
changes in the surrounding temperature, which, in turn, causes such a behavior of the thickness of the grown tube
where either capture of the shape-forming rod (freezing) by the crystal or break-off of the meniscus due to loss of its
stability are possible. Based on the mathematical model suggested below, we studied the process of growth of a crystal
under the action of a rectangular temperature pulse as a function of its amplitude and the duration of its effect.

Problem Formulation. First, we make some assumptions which allow us to considerably simplify the prob-
lem, viz., thermophysical parameters of the melt and the crystal are the same; heat liberated on the crystallization front
slightly affects the total thermal field of the melt–crystal system; in temperature calculation, the change in the tube
radii due to the effect of the temperature pulse can be neglected.

Under these assumption, the problem can be formulated as follows: during crystallization of a tube of length
L with inner and outer radii R1 and R2, respectively, at the speed of drawing V0 the temperature field T0 satisfies the
heat-transfer equation

ks 




1

r
 




∂

∂r
 



r 

∂T
0

∂r








 + 

∂2
T

0

∂z
2




 − V0ρscs 

∂T
0

∂z
 = 0 (1)

at the following boundary conditions: heat exchange with the surrounding medium, which has temperatures θ1
0 and θ2

0,
is specified on the inner and outer surfaces of the tube (Fig. 1):
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 (r, 0) = T0 ,   T

0
 (r, L) = Tc ,   R1 ≤ r ≤ R2 . (4)

are specified at the lower and upper ends of the tube.
Under the effect of the temperature pulse, the temperature T(r, z, τ) in the crystal satisfies the following heat-

conduction equation:
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with the boundary conditions
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and the initial condition

T (r, z, 0) = T
0
 (r, z) . (7)

The temperatures θ1 and θ2 are assumed to change with time according to the laws
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The behavior of the inner r1(z) and outer r2(z) radii is found from the differential equations

r
.
1 = − (V0 − h

.
1) tan (ε1 − ε0) ,   r1 (0) = R1 ;   r

.
2 = (V0 − h

.
2) tan (ε2 − ε0) ,   r2 (0) = R2 . (9)

Fig. 1. Schematic of tube growth (system of the coordinates and the notations):
1) crystal; 2) melt; 3) shaper; 4) capillary channel.
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Moreover, r1(z) and r2(z) satisfy the capillary Laplace equations which can be obtained by minimization of the func-
tional J(r1, r2), which, to an accuracy of a constant, is the potential energy of the melt meniscus
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Then, the equations and boundary conditions, which describe the profile curves of the menisci r1 and r2, take on the
following form:
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where the prime indicates the derivative with respect to z.
With the temperature field T(r, z, t) being known, we can determine the position of the crystallization front z

= f(r, t) by drawing the isotherm of the melting temperature

T (r, z, t) = Tm . (12)

Consequently, the heights of the menisci h1 and h2 are just their values at r = R1 and r = R2:

h1 = f (R1) ,   h2 = f (R2) . (13)

Determining the radii r1(z) and r2(z) from Eqs. (11), we thus can find the angles ε1 and ε2.
Solution of the Problem Posed and Discussion of the Results. The solution of problem (1)–(4) for determi-

nation of the initial temperature field T0(r, z) can be found in [1, 2]. We present solution (5)–(7) in the form of the
sum
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We substitute (14) into Eqs. (5)–(7) and apply the Laplace transform to T1. Then for T
~
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transformation of the function T1, we have
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The obtained problem (16) admits separation of variables and its solution can be presented in the form
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Eigenvalues of µk are the solutions of the algebraic equation











µJ1 (µ) − kJ0 (µ)

µJ1 



µ 

R1

R2




 + kJ0 




µ 

R1
R2





     

µN1 (µ) − kN0 (µ)

µN1 



µ 

R1

R2




 + kN0 




µ 

R1

R2














 = 0 , (19)

where

k = 
hsR2

ks
 ;   γ (µk) = − 

µkJ1 (µk) − kJ0 (µk)
µkN1 (µk) − kN0 (µk)

 . (20)

The square of the norm of the function Dk is found as

NDkN
2
 = 

(k2
 + µk

2)
2λk

 



D

2
 (µk) − 





R1

R2





2

 D
2
 



µk 

R1

R2








 ,   λk = (µk

 ⁄ R2)2 . (21)

We introduce the following notation

Mk
(1)

 = Tmmk − λ 
T1

0
 − T3

0

ω1 + ω2
 lk − 

T1
0ω2 + T3

0ω1

ω1 + ω2
 mk , (22)

Mk
(2)

 = Tcmk − λ 
T2

0
 − T4

0

ω1 + ω2
 lk − 

T2
0ω2 + T4

0ω1

ω1 + ω2
 mk , (23)

Lk = 



λ 

A − B

ω1 + ω2
 lk + 

Aω2 + Bω1

ω1 + ω2
 mk




 , (24)

mk = 
k

λk NDkN
 = 




D (µk) + 

R1

R2
 D 




µk 

R1

R2








 , (25)

lk = 
1

λk NDkN
 



kD (µk) ln R2 + k 

R1
R2

 D 



µk 

R1
R2




 ln R1 + D (µk) − D 




µk 

R1

R2








 , (26)

229



Gk
(1)

 = 




bk

0
 + 

ck
0

λk




 exp 




− 

L (ηk + χ)
2




 − 




ak

0
 + 

ck
0

λk





exp (− ηkL) − 1
 , (27)

Gk
(2)

 = 




bk

0
 + 

ck
0

λk




 exp 





L (ηk − χ)
2




 − 




ak

0
 + 

ck
0

λk





exp (− ηkL) − 1
 , (28)

χ = 
V0ρscs

ks
 ;   ηk = √ χ2 + 4λk  ;   ak

0
 = δ1mk + γ1lk . (29)

The coefficients bk
0 are calculated by the same formulas as ak

0 with the exception that δ2 and γ2 must be taken instead
of δ1 and γ1. The coefficients δi and γi (i = 1, 2) are determined by the following expressions:

δ1 = T0 − 
T1

0ω2 + T3
0ω1

ω1 + ω2
 ,   γ1 = − λ 

T3
0
 − T1

0

ω1 + ω2
 ,   δ2 = Tc − 

T2
0ω2 + T4

0ω1

ω1 + ω2
 ,   γ2 = − λ 

T4
0
 − T2

0

ω1 + ω2
 . (30)

The coefficients ck
0 are found from the formulas

ck
0
 = 

χ
λk NDkN

 = 



[α (k ln R2 + 1) + βk] D (µk) + 




α 




k 

R1

R2
 ln R1 − 1




 + β 

R1

R2
 k




 D 




µk 

R1

R2








 , (31)

where

α = λ 
T1

0
 − T2

0
 − T3

0
 + T4

0

L (ω1 + ω2)
 ;   β = 

(T2
0
 − T1

0) ω2 + (T4
0
 − T3

0) ω1

L (ω1 + ω2)
 . (32)

Using the known theorems of inversion of the Laplace transform which are applied to the functions Z
~

k(z, p), we find
their originals Zk(z, t):

Zk = 2πGk
(1)

  ∑ 

j=1

∞

 (− 1)j+1
 j 

exp 




χ − ηk

2
 L




 sin 

jπz

L
 + sin 

jπ (L − z)
L

L
2
 




j
2π2

L
2

 + 




χ − ηk

2





2



 exp 



− 





j
2π2

L
2

 + λk




 at




 +

+ 2πGk
(2)

  ∑ 

j=1

∞

 (− 1)j+1
 j 

exp 




χ − ηk
2

 L



 sin 

jπz

L
 + sin 

jπ (L − z)
L

L
2
 




j
2π2

L
2

 + 




χ − ηk

2





2



 exp 



− 





j
2π2

L
2

 + λk




 at




 +

+ 2 
ck

(0)

λk

  ∑ 

j=1

∞

 (− 1)j
 
sin 

jπz
L

 + sin 
jπ (L − z)

L

jπ
 exp 




− 





j
2π2

L
2  + λk




 at




 +

230



+ 
2
π

 Lk 










 ∑ 

j=1

∞

 (− 1)j
 
sin 

jπ
L

 z + sin 
jπ
L

 (L − z)

j
 



exp 




− 









jπ
L





2

 + λk



 (t − τ1) a




 η (t − τ1) −

− exp 



− 









jπ
L





2

 + λk



 (t − τ2) a




 η (t − τ2)




 










 +

+ Mk
(1)

 











sinh √λk  (L − z)

sinh √λk  L
 + 

2π

L
2   ∑ 

j=1

∞

 (− 1)j
 
j sin 

jπ
L

 (L − z)

λk + 




jπ
L





2  exp 



− 









jπ
L





2

 + λk



 at














 +

+ Mk
(2)

 











sinh √λk  z

sinh √λk  L
 + 

2π

L
2   ∑ 

j=1

∞

 (− 1)j
 

j sin 
jπ
L

 z

λk + 




jπ
L





2 exp 



− 









jπ

L





2

 + λk



 at














 −

− Lk 











sinh √λk  (L − z) + sinh √λk  z

sinh √λk  L
 η (t − τ1) + 

2π

L
2   ∑ 

j=1

∞

 (− 1)j
 j 

j 



sin 

jπ
L

 (L − z) + sin 
jπ
L

 z




λk + 




jπ
L





2  ×

× exp 



− 









jπ

L





2

 + λk



 a (t − τ1)




 η (t − τ1)










 +

+ Lk 











sinh √λk  (L − z) + sinh √λk  z

sinh √λk  L
 η (t − τ2) + 

2π

L
2   ∑ 

j=1

∞

 (− 1)j
 j 

j 



sin 

jπ
L

 (L − z) + sin 
jπ
L

 z




λk + 




jπ
L





2  ×

× exp 



− 









jπ

L





2

 + λk



 a (t − τ2)




 η (t − τ2)










 . (33)

Then we can find the temperature T1(r, z, t):

T1 (r, z, t) =  ∑ 
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and, consequently, according to (14), the temperature distribution in the crystal T(r, z, t).
The inner and outer radii of the tube, which vary under the effect of the temperature jump, can be found by

Eqs. (9):
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If the coordinates of the catching points of the meniscus with the inner and outer radii r1(z) and r2(z) are specified,
the boundary-value problems (11) allow one to completely determine r1(z) and r2(z) and, thus, values of the angles
ε1 and ε2. These problems were solved by the Runge–Kutta method by "shooting" from the points (R1, h1) and
(R2, h2) to the edges of the rod and the shaper, respectively.

We denote changes of the inner and outer radii of the tube relative to their initial values R1 and R2 in terms
of ∆r1(t) and ∆r2(t):

∆r1 (t) = ∫ 
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t

(V0 − h
.
1) tan (ε1 − ε0) dt ,   ∆r2 (t) = ∫ 
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t

(V0 − h
.
2) tan (ε2 − ε0) dt . (36)

The results of the calculations are given in Fig. 2 at the following parameters of growth: rate of drawing V0
= 3.3⋅10−3 cm/sec; amplitudes of the temperature jump A = %5oC, B = %8oC; R1 = 0.08 cm; R2 = 2 cm; R0 = 0.065
cm; h0 = 0.05 cm; L = 5.0 cm; T1

0 = 2000oC; T2
0 = 1540oC; T3

0 = 1950oC; T4
0 = 1500oC; Tc = 1550oC; T0 = 2100oC.

The temperature conditions and the geometric parameters of the shaper are selected such that at the initial instant of
time the angles ε1 and ε2 are equal to the angle of growth ε0 = 11o. It is seen from the figure that the behaviors of
the inner and outer radii are similar in shape, although the maximum value of ∆r2 exceeds the largest value of ∆r1
1.5–2.5 times. Thus, if the maximum change in ∆r1 is 0.005 cm, then the highest change in ∆r2 is equal to 0.0117
cm. Moreover, if the time of pulse effect is rather large (more than 1 min), then, beginning with certain times, ∆r1
and ∆r2 virtually do not change. A similar picture is observed with a positive temperature pulse with the only differ-
ence being that ∆r1 and ∆r2 are negative, i.e., the tube thickness will decrease.

We revealed two main types of behavior of ∆r1 and ∆r2: (1) ∆r1 = R1 − R0 at a certain value of time t —
the crystal is frozen to the rod; (2) always ∆r1 < R1 − R0 (at any value of ∆τ), and then the process crystallization
changes over to a new stationary regime of growth with different values of the inner and outer radii R1 and R2.

Of course, realization of one way or another of development of the process depends on the amplitudes of the
temperature effect A and B and each specific case needs its own calculations. For example, for the case given in Fig.
2 (A = −5oC, B = −8oC), there is no freezing of the crystal to the rod during any period of action of the temperature
pulse. If the temperature changes are A < −10oC and B < −15oC, the crystal freezes to the rod in less than 30 sec.

We now refer to the case where the pulse is positive (A > 0, B > 0). In this case, both the change of the proc-
ess over a new stationary regime of growth (with a large duration of the pulse effect ∆τ and at rather small A and B)
(a) and (b) break-off of the meniscus due to loss of its stability are possible. The latter is reduced to the investigation
of the second variation δ2J of the functional J(r1, r2): if δ2J > 0, the meniscus is stable and it is unstable when
δ2J < 0.

According to formula (10), we write δ2J in the form

Fig. 2. The outer ∆r2 (a) and inner ∆r1 (b) radii as a function of time of the
temperature pulse: 1) ∆τ = 30 sec; 2) 60; 3) 120. ∆r1, ∆r2, cm; t, sec.
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δ2
J = (L1y1, y1) ξ2

 + (L2y2, y2) η2
 , (37)

where

Lq (y) = − 
d
dz

 (Rqy′) + Pqy ; (38)

Rq = 
1

2
 

rq

(1 + rq
′
2

)3 ⁄ 2
 ;   Pq = 

1

2
 









(− 1)q+1

 
ρmg

σ
 (z + H) − 

rq
′′

(1 + rq
′
2

)3 ⁄ 2










 ;   q = 1, 2 , (39)

and ξ and η are arbitrary, rather small, quantities.
Since Rq > 0, finally the problem is reduced to revealing whether the operators L1 and L2 are positive deter-

mined. The answer to this question can be given by calculation of the eigenvalues of these operators: if any of them
is not positive, the meniscus is unstable. For determination we use the Ritz method [3]. We represent approximations
of the nth order ϕn

(q) to the eigenvectors ϕn
(q) of the operators L1 and L2 as

ϕn
(q)

 =  ∑ 

k=1

n

 bk
(q)

ek
(q)

 , (40)

where

ek
(1)

 = √ 2
h1 − h0

 sin 
kπ

h1 − h0
 (z − h0) ;   ek

(2)
 = √ 2

h2
 sin 

kπ
h2

 z . (41)

Then approximations of the nth order λ
__

q to the eigenvalues λq are found from the algebraic equation

Λ q − λ
__

qI  = 0 , (42)

where Λq is the matrix

Λq =  ei
(q)

, ej
(q)

  ,   i, j = 1, ..., n ;


 ek

(1)
, ej

(1)
  = ∫ 

0

h2


 R1ek

′(1)ej
′(1) + P1ek

(1)
ej

(1)
  dz ;   ek

(2)
, ej

(2)
  = ∫ 

h0

h1


R2ek

′(2)ej
′(2) + P2ek

(2)
ej

(2)
  dz .

The calculations showed that even at rather large amplitudes A and B the eigenvalues λq are positive, with the
first eigenvalue of the operator L2 being much smaller than that of the operator L1. This indicates that under the effect
of temperature pulses within a wide range of their variation the melt meniscus is stable and, moreover, the outer sur-
face of the melt meniscus is less stable than the inner surface.

Conclusions. Based on the suggested mathematical model of growth of crystal tubes with a small inner di-
ameter by the modified Stepanov method and the calculations according to it we showed the existence of critical val-
ues of the negative amplitudes of temperature pulses at which the crystal is frozen to the rod. In the case of the
positive amplitudes within a wide range of their variation, the meniscus does not break off. Consequently, a decrease
in the power of the generator is the most negative factor, which is the first to be reckoned with.

NOTATION

A and B, values of the temperature jumps of the surrounding media inside and outside the growing tube; cs,
specific heat capacity; g, free-fall acceleration; h0, rod height; h1 and h2, heights of the melt meniscus from the inner
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and outer sides of the tube; hs, heat-transfer coefficient; H, distance from the level of the melt in the crucible to the
edge of the shaper; J0 and N0, Bessel functions of first and second kind; ks, thermal conductivity; L, tube length; p,
parameter of the Laplace transform; r, z, cylindrical coordinates; r1 and r2, current values of the inner and outer radii
of the tube; R0, radius of the rod; R1 and R2, inner and outer radii of the tube; Rd, radius of the shaper; t, time; T1,
T∗ , parts of temperature T; T0 and Tc, temperature on the lower and upper ends of the crystal; Tm, temperature of
crystal melting; T0, initial temperature of the tube; T1

0, T2
0, and T3

0, T4
0, temperatures which determine the state of the

surrounding medium inside and outside the tube; T
~

, Laplace transform of T; V0, speed of drawing; ε0, angle of
growth; ε1 and ε2, angles between the profile curves of the menisci r1 and r2 and the axis z; η(t), Heaviside function;
θ1, θ2 and θ1

0, θ2
0, temperatures of the surrounding medium inside and outside the growing tube in nonstationary and

stationary growth; ρm, density of the melt; ρc, crystal density; σ, coefficient of surface tension of the melt; τ, quantity
related to time t; τ1 and τ2, final and initial instants of time of temperature jump action. Subscripts: s, solid; d, shaper;
m, melt; c, crystal.
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