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GROWING OF TUBES WITH A SMALL INNER DIAMETER
FROM THE MELT BY THE STEPANOV METHOD

V. A. Borodin, A. V. Zhdanov, and UDC 536.421
M. V. Yudin

A mathematical model is suggested for describing the growth of a crystal tube with a small inner diameter
from the melt by the modified Sepanov method with the tube being affected by temperature pulses. The be-
havior of the inner and outer radii of the tube as a function of the amplitude and duration of temperature
jumps is studied.

Introduction. Manufacture of tubes with a small inner diameter by the ordinary Stepanov method presents a
number of difficulties caused by maintenance of a constant value of the thickness of the grown tube. Often the
changes of the surrounding temperature are such that they lead to collapse of the internal cavity of the tube. Therefore,
another type of shaper has been suggested; in this shaper, the inner diameter is created due to the presence of a thin
cylindrical rod at the center with the upper end of the rod being located higher than the outer edge of the shaper.

This type of shaper requires studies associated with probabilistic power jumps of the generator which lead to
changes in the surrounding temperature, which, in turn, causes such a behavior of the thickness of the grown tube
where either capture of the shape-forming rod (freezing) by the crysta or break-off of the meniscus due to loss of its
stability are possible. Based on the mathematical model suggested below, we studied the process of growth of a crystal
under the action of a rectangular temperature pulse as a function of its amplitude and the duration of its effect.

Problem Formulation. First, we make some assumptions which alow us to considerably simplify the prob-
lem, viz., thermophysical parameters of the melt and the crystal are the same; heat liberated on the crystallization front
dightly affects the total thermal field of the melt—crysta system; in temperature calculation, the change in the tube
radii due to the effect of the temperature pulse can be neglected.

Under these assumption, the problem can be formulated as follows. during crystallization of a tube of length
L with inner and outer radii Ry and Ry, respectively, at the speed of drawing Vg the temperature field TO stisfies the
heat-transfer equation
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at the following boundary conditions: heat exchange with the surrounding medium, which has temperatures 9(1) and 68,
is specified on the inner and outer surfaces of the tube (Fig. 1):

0 0

oT aT
ko ==l k= (T - 8 @

where
O =To+Z(To-T); 8=To+L(Ta-Ty). )
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Fig. 1. Schematic of tube growth (system of the coordinates and the notations):
1) crystal; 2) melt; 3) shaper; 4) capillary channel.

To(f.0)=T0, °(rL)=T,, R<r<R,.

4
are specified at the lower and upper ends of the tube.

Under the effect of the temperature pulse, the temperature T(r, z 1) in the crystal satisfies the following heat-
conduction eguation:
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with the boundary conditions
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Tr,00)=T,, T(r,LL7)=T,, RSr<R,,
and the initial condition

T(r,z,0)=TO(r,z).

()
The temperatures 6, and 6, are assumed to change with time according to the laws
0,2z
8, =Ty + L (To-T)+AN (t-1) -n (t-1p)],
o 5 ©)
6,=Ta+ L (Ty-TY+Bn (t-1) -n (t-1p)]
The behavior of the inner rq(2) and outer ry(2) radii is found from the differentia equations
f1=‘(V0_'.‘1)tan(51_50) v 11 (0)=Ry; f2=(V0—ﬁ2)tan(£2—£0) 1200 =Ry. ©
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Moreover, rq(2) and ry(2) satisfy the capillary Laplace equations which can be obtained by minimization of the func-
tiona J(rq, rp), which, to an accuracy of a constant, is the potential energy of the melt meniscus
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Then, the equations and boundary conditions, which describe the profile curves of the menisci rq and ro, take on the
following form:
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where the prime indicates the derivative with respect to z
With the temperature field T(r, z t) being known, we can determine the position of the crystallization front z
= f(r, t) by drawing the isotherm of the melting temperature

T(rzt)=T,. (12)
Consequently, the heights of the menisci hy and hy are just their values at r = Ry and r = Ry:
hi=f(R), h,=f(R). (13)

Determining the radii r1(2) and ry(2) from Egs. (11), we thus can find the angles €; and &,.

Solution of the Problem Posed and Discussion of the Results. The solution of problem (1)—4) for determi-
nation of the initial temperature field To(r, 2) can be found in [1, 2]. We present solution (5)—(7) in the form of the
sum

T:T1+TD, (14
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=g AR @y =g InRy; A=hyk.

We substitute (14) into Egs. (5)—7) and apply the Laplace transform to Tq. Then for 'T'l, which is the Laplace
transformation of the function T4, we have
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T,(n0p=Ty-T(r,0), T,(,Lp=T.-T(,L).

The obtained problem (16) admits separation of variables and its solution can be presented in the form

00
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Here the functions Xy(t) are determined by the equalities
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Eigenvalues of i are the solutions of the algebraic equation
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The square of the norm of the function Dy is found as
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We introduce the following notation
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The coefficients bE are caculated by the same formulas as aﬂ with the exception that &, and y, must be taken instead
of 0, and y;. The coefficients & and y; (i = 1, 2) are determined by the following expressions:
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The coefficients cﬁ are found from the formulas
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where
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Using the known theorems of inversion of the Laplace transform which are applied to the functions zk(z, p), we find
their originas Zy(z, t):
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Then we can find the temperature T4(r, z t):
Ti(r,zt)= Z Z (2 ) X, (1), (34

k=1

and, consequently, according to (14), the temperature distribution in the crystal T(r, z t).
The inner and outer radii of the tube, which vary under the effect of the temperature jump, can be found by
Egs. (9):

t t
r =Ry~ [(Vo- hy) tan (g, —gg) dt, 1, (1) =R, +[(Vo- h,) tan (g, — £) dt . (35)
T

T
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Fig. 2. The outer Ar, (8) and inner Arq (b) radii as a function of time of the
temperature pulse: 1) At = 30 sec; 2) 60; 3) 120. Arq, Ary, cm; t, sec.

If the coordinates of the catching points of the meniscus with the inner and outer radii rq(z) and ro(2) are specified,
the boundary-value problems (11) allow one to completely determine rq(z) and ry(2) and, thus, values of the angles
€1 and &. These problems were solved by the Runge-Kutta method by "shooting” from the points (R, hy) and
(Ro, hy) to the edges of the rod and the shaper, respectively.

We denote changes of the inner and outer radii of the tube relative to their initial values Ry and Ry in terms
of Arq(t) and Arx(t):

t t
Ary () =] (Vo—hy tan(e; g dt, Ar,y (1) = [ (Vo —hy) tan (5~ gg) dit . (36)

O O

The results of the calculations are given in Fig. 2 at the following parameters of growth: rate of drawing Vg
= 331073 cm/sec; amplitudes of the temperature jump A = +5°C, B = +8°%C; Ry = 0.08 cm; R, = 2 cm; Ry = 0.065
em; hg = 0.05 cm; L = 5.0 em; T9 = 2000°C; T9 = 1540°C; TS = 1950°C; T§ = 1500°C; T, = 1550°C; To = 2100°C.
The temperature conditions and the geometric parameters of the shaper are selected such that at the initia instant of
time the angles €1 and €, are equa to the angle of growth g = 11°. It is seen from the figure that the behaviors of
the inner and outer radii are similar in shape, athough the maximum value of Ar, exceeds the largest value of Arq
1.5-2.5 times. Thus, if the maximum change in Arq is 0.005 cm, then the highest change in Ar, is equal to 0.0117
cm. Moreover, if the time of pulse effect is rather large (more than 1 min), then, beginning with certain times, Arq
and Ar, virtually do not change. A similar picture is observed with a positive temperature pulse with the only differ-
ence being that Arq and Aro are negative, i.e., the tube thickness will decrease.

We revealed two main types of behavior of Arq and Ary: (1) Arp = Ry —Rp at a certain value of time t —
the crystal is frozen to the rod; (2) aways Arq<R; - Ry (at any value of At), and then the process crystallization
changes over to a new stationary regime of growth with different values of the inner and outer radii R; and Ro.

Of course, redlization of one way or another of development of the process depends on the amplitudes of the
temperature effect A and B and each specific case needs its own calculations. For example, for the case given in Fig.
2 (A = -5°C, B = -8°C), there is no freezing of the crystal to the rod during any period of action of the temperature
pulse. If the temperature changes are A<-10°C and B <-15°C, the crystal freezes to the rod in less than 30 sec.

We now refer to the case where the pulse is positive (A >0, B> 0). In this case, both the change of the proc-
ess over a new stationary regime of growth (with a large duration of the pulse effect At and at rather small A and B)
(& and (b) break-off of the meniscus due to loss of its stability are possible. The latter is reduced to the investigation
of the second variation 5°J of the functional J(rq, ro): if 52J>0, the meniscus is stable and it is unstable when
LAR0)

According to formula (10), we write 8 in the form
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and & and n are arbitrary, rather small, quantities.

Since Ry >0, finaly the problem is reduced to revealing whether the operators L; and Ly are positive deter-
mined. The answer to this question can be given by calculation of the eigenvalues of these operators: if any of them
is not positive, the meniscus is unstable. For determination we use the Ritz method [3]. We represent approximations
of the nth order <|>$]q) to the eigenvectors <|>$]q) of the operators L and L, as

n
EIQ) — z b(kQ)Q((q)' (40)
k=1
where
W_f_2  _kn @ _~J2 . km
= -hp) ; = —_ — 7.
b h; —hy " h; —hy =P & h, l hy © (41)

Then approximations of the nth order Aq to the eigenvalues Ay are found from the algebraic equation
(A - Ag0=0, (42
where Aq is the matrix
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The calculations showed that even at rather large amplitudes A and B the eigenvalues A are positive, with the
first eigenvalue of the operator L, being much smaller than that of the operator L. This indicates that under the effect
of temperature pulses within a wide range of their variation the melt meniscus is stable and, moreover, the outer sur-
face of the melt meniscus is less stable than the inner surface.

Conclusions. Based on the suggested mathematical model of growth of crystal tubes with a small inner di-
ameter by the modified Stepanov method and the calculations according to it we showed the existence of critical val-
ues of the negative amplitudes of temperature pulses at which the crystal is frozen to the rod. In the case of the
positive amplitudes within a wide range of their variation, the meniscus does not break off. Consequently, a decrease
in the power of the generator is the most negative factor, which is the first to be reckoned with.

NOTATION

A and B, values of the temperature jumps of the surrounding media inside and outside the growing tube; cg,
specific heat capacity; g, free-fall acceleration; hg, rod height; h; and h,, heights of the melt meniscus from the inner
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and outer sides of the tube; hg, heat-transfer coefficient; H, distance from the level of the melt in the crucible to the
edge of the shaper; Jy and Ng, Bessel functions of first and second kind; ks, therma conductivity; L, tube length; p,
parameter of the Laplace transform; r, z, cylindrical coordinates; rq and ro, current values of the inner and outer radii
of the tube; Ry, radius of the rod; Ry and Ry, inner and outer radii of the tube; Ry, radius of the shaper; t, time; Ty,
TD, parts of temperature T; Tg and T, temperature on the lower and upper ends of the crystal; Ty, temperature of
crystal melting; TO, initial temperature of the tube; 'I_'ff Tg, and Tg, Tfl), temperatures which determine the state of the
surrounding medium inside and outside the tube; T, Laplace transform of T; Vo, speed of drawing; &, angle of
growth; €, and &,, angles between the profile curves of the menisci r; and ro and the axis z n(t), Heaviside function;
641, 6, and 98, 68, temperatures of the surrounding medium inside and outside the growing tube in nonstationary and
stationary growth; py,, density of the melt; pg, crystal density; o, coefficient of surface tension of the melt; T, quantity
related to time t; 11 and Ty, fina and initial instants of time of temperature jump action. Subscripts: s, solid; d, shaper;
m, melt; ¢, crystal.
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